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Abstract: Torsional resonances are encountered in high 
performance motion control systems because the 
mechanical coupling between  the motor and the load has 
finite stiffness. The presence of torsional resonance in 
motion control systems limits the maximum achievable 
performance and causes undesirable oscillations in the 
control system response. The correct application of the 
IMPACT (Internal Model Principle and Control Together) 
can eliminate the instability introduced by the torsional 
resonance and therefore permit higher performance levels 
to be achieved. This paper outlines the control strategies 
for compensating torsional resonance in high performance 
servo drives, and illustrates advantages of the proposed 
IMPACT structure. The special case of the IMPACT 
structure is proposed in order to establish the damping 
effect on the mechanical part.  

Keywods: Torsional resonance, Oscillation suppression, 
IMPACT strucutre, Controlled electrical drives, Robust 
control, Distrubance rejection.  
 

1. INTRODUCTION  
 

Most of the machine centers, industrial robots,  
servomechanisms and other rotating machinery have the 
geared reduction mechanisms between output shafts of 
motors and driven machine parts. The insufficiency of the 
torsional stiffness of the geared reduction mechanism 
often induces transient vibrations mainly related to 
eigenvalues of the mechanical parts in the lower-
frequency range when the motor starts or stops. Elastic 
couplings and joints within the machine system are major 
impediments to the performance enhancement, since high 
loop gains often destabilize torsional resonance modes 
associated with the transmission flexibility. Vibration 
suppression of rotating machinery is an important 
engineering problem [1-7].    

The problem on torsional oscillation suppression and 
disturbance rejection in flexible system originates in steel 
rolling mill systems, where the load is  coupled to the 
driving motor by long shaft. The small elasticity of the 
shaft is magnified and has a vibrational effect on the load 
speed. Vibrations caused by the load impact and the step 
input endanger the integrity of the mechanical structure 
and detriorate the product quality. This vibration is not 
only undesirable but also the origin of th instability of the 
system in some cases. As the newly required speed 
response is very close to the first resonant frequency, the 
conventional controllers are not longer effective [3,5,6].  

To overcome the problem, various control strategies 
have been proposed, that may be divided into the 
following three groups [3]: 1) control strategies based on 
the direct measurement of motor- and load- side variables, 

2) strategies involving only one feedback  device attached 
to the motor and the observer that estimating remaining 
states [5,6], and 3) vibration supression strategies based 
upon the notch filtering and phase-lead compensation 
applied in conventional control structures [3]. In this 
paper, a brief review of them will be given. Next, a new 
control strategy based on IMPACT structure will be 
proposed as a simple and practical control algorithm. The 
proposed control technique should be to satisfy new 
requirements in the quality of control, i.e., 1) faster speed 
control response, 2) disturbance rejection on the load 
speed, and 3) robustness to parameter variations including 
gear backlash. This paper will show that the IMPACT 
structure [7-10] is suitable for suppressing of torsional 
oscillations in servo drives with flexible coupling. The 
special case of the IMPACT structure will be proposed. 
 

2. TORSIONAL RESONANCE AND SERVO 
SYSTEM WITH FLEXIBLE COUPLING 

 
Resonance is a steady state phenomenon that occurs 

when motor’s natural resonant frequencies are excited at 
particular velocities. For example, if we slowly increase 
motor’s speed, we may notice „rough“ spots at certain 
speeds. The „roughness“ is resonance (Fig.1). But, it is 
not caused by transient reference inputs. Resonance is 
affected by the load. Some loads are resonant, and can 
make motor resonance worse. Other loads can damp 
motor resonance. Unlike resonance, ringing is a transient 
phenomenon, that can be caused both by accelerating or 
decelerating to a reference velocity. Namely, when 
controlled to quickly accelerate to a given velocity, the 
motor shaft can „ring“ about that velocity, oscillating 
back and forth. As resonance, ringing causes error in 
motor shaft position. Also, ringing (or vibration) can 
cause audible noise. 

Time

Ve
lo
ci
ty

Resonance

Actual

Reference

  
Fig.1 Illustration of a  resonance phenomenon in servo 

drives 

In order to slove these problems, system designers will 
sometimes attach a damping load, such as an inertial 
damper, to the back of the motor. However, such a load 
has the undesired effects of decreasing overall 
performance, and increasing system cost. Again, 
designers of the control part of a servo system, usually 



use the simplest motor/load models that haven’t 
information about resonance modes and fast dynamics.  

The more realistic model of an AC motor with load is 
illustrated on Fig.1. and Fig.2, as a two-mass motor/load 
system with flexible coupling.  
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Fig.2. Flexible coupling of the motor shaft and load   

 
Fig.3. Block diagram of the servo system’s plant with 

flexible coupling  
The electromagnetic torque Mem is control variable, and 
the tork on loaded shaft Ml presents disturbance. The 
motor inertia Jm and load inertia Jl are coupled by the 
shaft or the transimssion system having a finite stiffness 
coeficient cs. The friction coefficient bv generally assumes 
very low values, giving rise to weakly damped 
mechanical oscillations [3]. The torsional torque Mo 
equals the load torque Ml only in the steady state. During 
transients, the speeds of motor and load differ, and 
torsional torque Mo is given by 

M c bo s v= +Δθ Δω  (1) 
Contrary to the traditional model Wm(s)=1/(Jl+Jm)s, if the 
shaft sensor is mounted on the motor, the transfer function 
of the mechanical subsystem is defined by 
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where undamped natural frequencies (ωp, ωz) and relative 
damping coefficients (ζp, ζz) are given by 

ω ω

ς ς

p
s m l

m l
z

s

l

p
v m l

s m l
z

v

s l

c J J
J J

c
J

b J J
c J J

b
c J

=
+

=

=
+

=

( )
, ,

( )
,

2 2

4 4

 (3) 

Undamped natural frequency ωp and ωz of the pole- and 
zero-pairs in (2) are refered as the resonance and 
antiresonance frequencies [2,3], and their quotient is 
known as the resonance ratio 

R
J
Jr

p

z

l

m
= = +
ω
ω

1  (4) 

In the case under consideration, a low value of resonance 
ratio reduces the influence of torsional load on dynamics 
of the speed control loop. With Jm>>Jl, oscillations of 
torsional torque are filtered by a large motor inertia Jm 
and their influence on the control of the motor speed 
becomes smaller. A damped control of Θm and ωm is 
favorable, but most applications require fast and precise 
control of the load variables  Θl and ωl [3]. Also, in that 
case, the estimation of resonance modes from detected 
signals (Θm and ωm) is not possible, and the load speed 
and position might exhibit weakly damped oscillations 
that cannot be disclosed and compensated from the 
feedback signals [3].  

In the case that sensor is mounted on the load shaft, the 
mechanical subsystem of the drive has the transfer 
function Wl(s) given by 

W s
s

M s J J s

b
c
s

b
c
s

J J
c J J

s

J J s

s

s s

l
l

em m l

v

s

v

s

l m

s m l

m l

z

z

p

p p

( )
( )
( ) ( )

( )

( )

= =
+

+

+ +
+

=
+

+

+ +

ω

ς
ω

ς
ω ω

1
1

1

1
1
2

1
2 1

2

2
2

 (5) 

where undamped natural frequencies (ωp, ωz) and relative 
damping coefficients (ζp, ζz) are given by (3), too. 
 

3. STRATEGIES FOR COMPENSATING 
TORSIONAL RESONANCE 

 
Many controllers already exist in the field of motion 

control, but all most of them are designed by assuming an 
ideal, rigid transmission train [3]. However, the desired 
speed-loop bandwidth in modern machining centres 
approaches the frequency of torsional resonance and 
coincides, at the same time, with most disturbing 
statistical and deterministic noises. Under these condition, 
P&I control laws are not suitable. Standard improvement 
of conventional motion control laws and structures is 
based on antiresonant compensator inclusion as it is 
shown on Fig.4. Also, in the literature are proposed model 
based control approaches, control tehniques based on the 
disturbance observers, as well as approaches based on two 
freedom structure based on H2 control, etc. [2-6,11].  
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Fig.4. System with antiresonant compensator 

H2 two freedom controller (Fig.5) minimizes functional 
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The software for calculation of H2 controller (Gfb  and Gff) 
is available on the cite [11]. In this manner is possible to 
get more appropriate PI control law (Gfb  ≡ Gff , Gd  ≡1, 
see Fig.5). But, as one drawback, we can note that H2 
controller design uses trial and error method in tuning 
parameters to meet the performance specifications (by 



choosing of different λ and αh values in the simulation 
trials). 

Wou

Gfb

Gff

r
WouGd

d

y

(Gd  1)

-
u

Plant

( e=r-y )

 

Fig.5. H2 controlling structure 

The notch filter compensator  
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as antiresonance comensator (Fig.4) is most frequently 
used in practice. The notch filter zeros cancels critical 
poles (of the torsional load), while the poles of the filter 
become a new pair of conjugate complex poles with 
increased relative damping ( pp zzς ς ). Digital 
implementation of notch filter ( , ,pp p zz z nf pς ς ς ς ω ω= = = )  
is given by discrete transfer function 
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For an exact cancellation of resonance modes, both the 
resonance frequency and damping factor must be known 
while tuning all parameters of the notch filter [3]. But, the 
exact location of critical poles is unknown and, thus, the 
cancellation is generally imprecise. The notch filter (7) 
suppresses the resonant mode by the ratio pp zzς ς . Since 
a low damping coefficient of zeros increases greatly the 
snesitivity to parameter variations, the ratio pp zzς ς  is 
limited. Hence, the excitation of resonance modes can be 
only reduced, but not eliminated completely, by the notch 
serial compensator. The notch compensator si very 
sensitive to parameter variation, and it presents a serious 
problem in tuning and implementation the notch filter [3]. 

As a more robust and more practical solution of 
vibration supression strategy based upon the structure on 
Fig.4; in [3] is proposed antiresonance compensator 
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where the n stands for the ratio between the resonance 
mode half-period (Tosc /2) and the sampling time (T) of the 
discrete time controller. The oscillation period of the 
resonance mode Tosc is given by 
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and it is adjustable parameter of the FIR filter (8), that 
could be experimentally defined. The idea of the synthesis 
of filter (8) was elaborated in [3]. The conceived cascade 
antiresonance compensator is simpler, less sensitive to 
parameter changes, and requiring a setting of only one 
parameter, but parameter n have to be identified precisely. 
The theoretical value of the suppression at 1osc oscTω =  

frequency is infinite, rather then a finite ζ/ζp notch filter 
suppression value.   

The resonance ratio control is proposed as an 
improvement of model-based control techniques (i.e. 
model following control, application of disturbance 
observer, time derivate feedback, state feedback control).  
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Fig.6. Resonance ratio control 

The resonance ratio is defined by relation (4), and should 
be about 5  because of effective vibration suppression. 
In [6], as a simple and practical strategy, it is proposed the 
resonance ratio control based on the fast disturbance 
observer (see Fig.6 and Fig.2), with optimal resonance 
ratio 0.8 5 . In conventional disturbance observer 
applications 100% of the estimated disturbances is feed 
back. In the case on Fig.6, 1-K of the estimated 
disturbances is used. Parameter K (0<K≤1) and time 
costant τ (which defines observer’s cutoff frequency) are 
adjustable parameter for vibration suppression. But, as it 
is previous commented, this control strategy cannot 
efficiently provide vibration suppression on the load side.  

A good review of control strategies of vibration 
supression is given in [3], where FIR antiresonant filter 
(9) is proposed as improvement of previous approaches. 
This solution is investigated and compared with IMPACT 
structure possibilities in  [7].  
 

4. IMPACT STRUCTURE 
 
 Fig.7 depicts the special case of IMPACT 
controlling structure that corresponds to control plants 
without the transport lag (dead time). Thus the structure 
may be conveniently applied for digitally controlled 
electrical drives [7]. In that case, signal wM  modeled the 
influence of load torque disturbance on system output y  
which may be shaft speed or angular position depending 
on the type of servomechanism.  

 
Fig. 7. IMPACT structure of digital control system  

The control portion of the system of Fig.7 is given by 
polynomials in complex variable z−1 . In the IMPACT 
structure, the control plant )(sWou  is given by its simplified 
nominal discrete model  

W z
z P z

Q z
o

k

u

o

o
( )

( )

( )
−

− − −

−
=1

1 1

1
 



developed at the low-frequency band. This model is 
included into the control part of the IMPACT structure as 
a two-input  internal plant model. Signal ε  estimates 
effects of generalized external disturbance and 
uncertainness of nominal plant model on the system 
output. Uncertainness of nominal plant model can be 
adequately described by the multiplicative boundary of  
uncertainness  )(ωα  

W z W z W zo( ) ( )( ( ))− − −= +1 1 11 δ  
δ α ω ω πωW e Tj T( ) ( ), ,− ≤ ∈ [ ]0  

(11) 

Then the system in Fig. 7 satisfies the condition of robust 
stability if the nominal system is stable and if the 
following inequality is fulfilled   
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The robust performance is achieved  by the local minor 
loop of the system in Fig. 7. Namely, the main role of this 
loop is suppression of effects of the generalized 
disturbance on the system output. This loop comprises 
internal model of disturbance implicitly and two-input 
nominal plant model determined by polynomials 
z P zu

o− −1 1( )  and Q zo ( )−1 , explicitly. In the case of a 
control plant without the dead time, the internal model of 
disturbance is reduced to the prediction polynomial 

)( 1−zD .  

Φ Φ( ) ( ) , (deg )z F z t kT T− = = ≥1 0  
The choice of this polynomial affects the robust 
performance of the system and effectiveness in absorption 
of the given class of disturbance. For example, for 
constant and ramp disturbances, the proper choice of 
prediction polynomials are 1)( 1 =−zD  and 11 2)( −− −= zzD , 
respectively. Smaller sample period, has justification in 
the linear approximation of arbitrary signal on a limited 
time range. Thus, polynomial 11 2)( −− −= zzD  refers on 
calsses of slowly-changing disturbances, too. In that 
manner, principle of absorption in IMPACT structure is 
implemented in the minor loop, that enables - estimation 
of  influence of generalized disturbance, its prediction and 
feedforward compensation  [7-10]. 
According to the standard procedure of IMPACT 
structure synthesis, for a minimum phase control plant, 
polynomial 1( )R z−  should be taken on as )()( 11 −− = zPzR o

u . 

The polynomials P zr ( )−1  and P zy ( )−1  in the main 
external loop of the controlling structure in Fig. 7 
determine the dynamic behavior of closed-loop system 
and these polynomials are determined independently from 
the design of local inner control loop of the structure. The 
desired pole spectrum of the closed-loop control system 
may be specified by the relative damping coefficient ς  
and undamped natural frequency ωn  of the system 
dominant poles. In doing so and taking into account the 
required zero steady-state error for step reference signal, 
the desired second order discrete closed-loop system 
transfer function becomes  
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Then polynomials P zr ( )−1  and P zy ( )−1  are calculated in 
a straightforward manner from  
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However, like it was noticed in [7,10], internal model of 
control structure (Fig.7) increases sensitivity of the 
system on quantization noise, specially in speed 
servosystems. As one solution of this problem, it can be 
suggested usage of prediction polynomials filters [8] 
instead the classical prediction polynomials. Generally, 
the predictive filter is defined as an algorithm that 
estimates future values of the input signal and suppresses 
the noise contamination [12]. The relatively simple forms 
of digital predictive filters corresponding to polynomial 
disturbances are treated. In this paper we present structure 
consisting of the simplest RLSN (Recursive Linear 
Smoothed Newton) predictor (Fig. 8) instead prediction 
polynomial. Parameter cp<1 enables that the RLSN 
predictor has amplitude-frequent characteristic of NF 
filter.  In [7] is shown that changes of this parameter (cp) 
could influence on expansion of robust stability area in 
the field of medium frequencies.      
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Fig.8. Modified IMPACT structure of digitally controlled 

speed servosystem 
 

Synthesis of IMPACT structure starts from following 
plant model (see Fig.2 – flexible coupling is neglected) 
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Selection of sampling period is coupled with period of 
torsional oscillation, so 
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Inner countour of the structure on Fig.8 contains a model 
of step disturbances. Because very small sampling period 
is selected, this internal model of disturbance is adequate 
solution for wider class of disturbance.  Adjustment of 
parameters cp simply influences on efficiency of 
absorption of disturbance effects or expansion of area of 
robust stability and suppression of torsional oscillations. 
The presented structure is simple with small number of 
adjustable parameters that could be easily set to achieve 
the desired robust, filtering, and dynamic properties of the 
system. 

However, possibilities of the structure on Fig.8 to meet 
robust stability condition by changing parameter cp are 



limited. From this reason, on Fig. 9 is proposed modified 
IMPACT structure.    
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Fig.9. Modified IMPACT structure 
Practically, because of elastic drive train, our goal is wide 
robust stability area about resonant frequency pω . In 
order to lift up frequency curve of the multiplicative 
bound of uncertainties of IMPACT structure about 
resonant frequency pω , we can choose following 

polinomial 1( )NR z−  

z P zu

o− −1 1( )  (16) 

where, smaller paremeter ς  means wider robust stability 
area about resonant frequency pω . In the special case, in 
oreder to expand robust stability area about resonant 
frequency pω , polinomial (16) can be factor of implicit 

disturbance internal model 1( )A z− , too. 

The polynomials P zr ( )−1 , P zy ( )−1  and 1( )DR z− in the 
main external loop of the controlling structure in Fig.9 
determine the dynamic behavior of closed-loop system 
and these polynomials are determined independently from 
the design of local inner control loop of the structure 
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Selection of 1( )pT z−  is free, but poles of polinomial 
1( )pT z−  should be stable and good damped.  

As in previous case, according to the standard procedure 
of IMPACT structure synthesis, for a minimum phase 
control plant, polynomial 1( )R z−  should be taken on as 

)()( 11 −− = zPzR o
u . 

 
5. ILLUSTRATIVE EXAMPLE 

 
The proposed control algorithms based on IMPACT 

structure are tested by simulation trials, under the same 
conditions as performed in [3]. In [2], two identical 
motors are interconnected by elastic hollow shaft.  Motors 
are independently controlled and used as a motor and a 
load. The electromagnetic resolver is placed on both of 
them. We distinguish following important data (see Fig.2)  
Jm=0.000620kgm2, Jm=0.000220kgm2, radNmcs /350= , 

J J c bm l s v= = = =0000620 0000220 350 00042 2. , . , , .kgm kgm Nm/ rad Nms/ rad. 

Fig.10 shows simulation results of IMPACT structure 
presented on Fig.8. Results presented on Fig.10 are 
slightly better then analog simulation and experimental 
results concerning with  antiresonance compensator (9), 
presented in [3]. The system simulation is performed 
when the sensor is placed on loaded shaft (Fig.8), with 
selected characteristic cp=0.2, and following polynomials 
of control structure: 1 1( ) ( ) 0.636881o

uR z P z− −= = , 1 1( ) 1oQ z z− −= − , 
1 1( ) 0.03941938rP z z− −=  and 1 1( ) 0.702 0.741yP z z− −= − + . As in 

[3], the same input signals (ωr(t)=3⋅h(t-0.05) [rad/s], 
Ml(t)=1⋅h(t-0.1) [Nm]) are used (see Fig.3 and Fig.8). The 
desired close-loop system transfer function is specified by 
undamped natural frequency ωn=400 rad/s and relative 
damping coefficient ζ=0.7. 
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Fig.10. Operation of IMPACT structure on Fig.8 (cp=0.2, ωn=400 

rad/s, ζ=0.7, ωr(t)=3⋅h(t-0.05) [rad/s], Ml(t)=1⋅h(t-0.1) [Nm]) 
 

But, our aim is to control the load shaft speed in the 
presence of torsional vibration, system parameter 
variation, disturbance torque, and in the absence of a 
dedicated loadside speed sensor. Robustness and 
efficinecy of IMPACT structure proposed on Fig.9 is 
illustrated on Fig.11. and Fig.12. As on Fig.9 illustrated, 
the sensor is mounted on motor shaft, and in that case the 
system simulation is performed.  

 
Fig.11. The multiplicative bound of uncertainties of IMPACT 

structure 
Namely, the same experimental conditions as in [3] and 
the previous case are simulated (plant characteristics, 
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torsional load, input signals). According to described 
procedure synthesis, polinomials of controling structure 
on Fig. 9 are defined. As inner contour filter 

1 1( ) / ( )A z C z− − , again adopted simple RLSN predictor 

with cp=0.2. Polinomials 1 1( ) ( ) 0.636881o
uR z P z− −= =  and  

1 1( ) 1oQ z z− −= −  are same as in the previous case. As the 

tuning parameter ς  of (16) is choosen 0.025ς = , and 
polinomial 1( )DR z−  is 1 1 2( ) 1 1.55951 0.06594DR z z z− − −= − + . 
In order to can solve Diophant’s equation from (17), 
polinomial 1 1 1( ) (1 0.9 )(1 0.1 )pT z z z− − −= − −  is adopted. 
From (17) following polynomials of control structure 
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and 1 1( ) 0.055199+0.061yP z z− −= −  are calculated. 
 

 
 

Fig.12. Operation of IMPACT structure on Fig.9 (cp=0.2, ωn=400 
rad/s, ζ=0.7, ωr(t)=3⋅h(t-0.05) [rad/s], Ml(t)=1⋅h(t-0.1) [Nm]) 
 

6. CONCLUSION 
 

Mechanical resonance is a current problem in servo 
systems, and falls into two categories: low-frequency and 
high-frequency. High-frequency resonance usualy causes 
instability at the natural frequency of the mechanical 
system, typically between 500Hz and 1200Hz. Low-
frequency resonance occurs more often in general 
industrial machines, at the first phase crossover, typically 
between 200Hz and 400Hz. Standard servo control laws 
are structured for rigidly coupled loads. However, 
instability results when a such high-gain control law is 
applied to a flexible coupled servo system. Often, the 
resultin rigidity of the transmission is so low that 
instability results when servo gains raised to levels 
necessary to achive desired performance. 

This paper  presents several methods for dealing with 
torsional resonance in servo drives, and proposes a special 
case of the IMPACT strucutre in order to improve the 
existing control structures and motion control algorithms 
to make them compatible with mechanical subsystem. 
The antiresonant feature of the structure is not based on 
the exact cancellation of resonance poles. Due to the 
simplicity and robustness of the proposed structure, it can 

be easily applied to various flexible systems with different 
regulator combinations.  
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